Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Proceedings of SPIE - The International Society for Optical Engineering ; 12611, 2023.
Article in English | Scopus | ID: covidwho-20245326

ABSTRACT

The immune system is developed to preserve its hosts from an ever-expanding cluster of pathogenic microbes. The elimination of toxic substances, allergens, or any other harmful existences that come in, passing the mucosal surfaces, is as well the responsibility of this special system. Its ability to distinguish self (our bodies' functioning cells and tissues) from non-self is the key aspect to its ability to mobilize some reaction to an invasion initiated by the stranger substances listed above. To identify and kill unsafe microorganisms, the host applies both natural and versatile systems, our innate and adaptive immune systems. Vaccines are used to combat the current SARS-CoV-2 strain by utilizing immune system mechanisms, specifically the adaptive immune system. Vectored vaccines, protein vaccines, genetic vaccine, and monoclonal antibody for passive vaccination are among the vaccine platforms under consideration for SARS-CoV-2. Each vaccine has its own benefits and drawbacks. This paper is written to describe the three major forms of COVID-19 vaccines, as well as the unique mechanisms of elements of the immune system associated with the virus. © 2023 SPIE.

2.
The Book of Fructans ; : 297-310, 2023.
Article in English | Scopus | ID: covidwho-20234962

ABSTRACT

Infectious diseases of viral origin have never received so much interest globally since the emergence of the COVID-19 pandemic disease. In contrast to bacterial infections, antibiotic treatments do not have any effect on viral infections, requiring alternative solutions to reduce the impact of viral spread on animal populations. More important than curing, preventing viral replication before disease development is probably the best strategy to minimalize the negative effects of viruses on a global scale. Fructans, known to stimulate the immune system (by either interacting directly or indirectly with the immune system), may be interesting candidates as part of this broader prevention strategy. This chapter discusses the potential antiviral properties of fructans in relation to their well-described immunomodulating, antioxidant and prebiotic attributes, as well as a possible role as protein binders which may disturb the proper function of viral proteins, and thus reduce the infection ability of certain viral strains. © 2023 Elsevier Inc. All rights reserved.

3.
Int J Mol Sci ; 24(11)2023 May 27.
Article in English | MEDLINE | ID: covidwho-20242253

ABSTRACT

Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.


Subject(s)
COVID-19 , Interferon Type I , Animals , Interferons/genetics , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Interferon Type I/genetics , Cytokines , Immunity, Innate , Immune Evasion
4.
2nd International Conference on Biological Engineering and Medical Science, ICBioMed 2022 ; 12611, 2023.
Article in English | Scopus | ID: covidwho-2327397

ABSTRACT

The immune system is developed to preserve its hosts from an ever-expanding cluster of pathogenic microbes. The elimination of toxic substances, allergens, or any other harmful existences that come in, passing the mucosal surfaces, is as well the responsibility of this special system. Its ability to distinguish self (our bodies' functioning cells and tissues) from non-self is the key aspect to its ability to mobilize some reaction to an invasion initiated by the stranger substances listed above. To identify and kill unsafe microorganisms, the host applies both natural and versatile systems, our innate and adaptive immune systems. Vaccines are used to combat the current SARS-CoV-2 strain by utilizing immune system mechanisms, specifically the adaptive immune system. Vectored vaccines, protein vaccines, genetic vaccine, and monoclonal antibody for passive vaccination are among the vaccine platforms under consideration for SARS-CoV-2. Each vaccine has its own benefits and drawbacks. This paper is written to describe the three major forms of COVID-19 vaccines, as well as the unique mechanisms of elements of the immune system associated with the virus. © 2023 SPIE.

5.
Semin Immunol ; 68: 101778, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2325101

ABSTRACT

Recent developments in sequencing technologies, the computer and data sciences, as well as increasingly high-throughput immunological measurements have made it possible to derive holistic views on pathophysiological processes of disease and treatment effects directly in humans. We and others have illustrated that incredibly predictive data for immune cell function can be generated by single cell multi-omics (SCMO) technologies and that these technologies are perfectly suited to dissect pathophysiological processes in a new disease such as COVID-19, triggered by SARS-CoV-2 infection. Systems level interrogation not only revealed the different disease endotypes, highlighted the differential dynamics in context of disease severity, and pointed towards global immune deviation across the different arms of the immune system, but was already instrumental to better define long COVID phenotypes, suggest promising biomarkers for disease and therapy outcome predictions and explains treatment responses for the widely used corticosteroids. As we identified SCMO to be the most informative technologies in the vest to better understand COVID-19, we propose to routinely include such single cell level analysis in all future clinical trials and cohorts addressing diseases with an immunological component.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Immunity, Innate , Systems Analysis
6.
Vestnik Rossiyskoy voyenno meditsinskoy akademii ; 3:547-556, 2022.
Article in Russian | GIM | ID: covidwho-2292766

ABSTRACT

The most significant single nucleotide human leukocyte antigen genes polymorphisms and innate immunity genes associated with varying degrees of acute respiratory infection severity are considered-COVID-19 caused by the SARS-CoV-2 coronavirus. As data accumulated, it became clear that the SARS-CoV-2 virus exhibits significant regional, ethnic, and individual specificity. This is due to the population groups' genetic characteristics. This is necessary to reliably know the human genotype relationship with the COVID-19 course severity (asymptomatic, mild, moderate, severe, and extremely severe up to fatal outcomes) for more successful therapy and vaccination. At the same time, it was also known that the innate immunity system is on the first line of defense against the pathogenic penetration into the body, and the human leukocyte antigen system encodes molecules of the same name on the surface of cells that present various antigens, including viral infection pathogens, and determine the severity of the course of many diseases;therefore, these systems' genes. This approach makes it possible to assess the likelihood of a severe and extremely severe disease course in healthy and infected people, which in turn contributes to the correct therapy strategy, pharmacotherapy, and vaccination, as well as to create new antiviral therapeutic and preventive medicines. The genetically determined immune response heterogeneity to SARS-CoV-2 infection requires further study, since there is no unambiguous opinion about the leading mechanism that determines disease severity.

7.
Revista cientifica estudiantil ; 5(3), 2022.
Article in Spanish | CAB Abstracts | ID: covidwho-2290695

ABSTRACT

Introduction: the daily increase in cases and deaths, the economic losses in the millions suffered by affected nations and the consequent strain on the human resources involved in reversing this situation have made the COVID-19 pandemic an unprecedented international challenge. Background: to describe the orchestrated immune response following SARS-CoV-2 infection. Methods: an up-to-date bibliometric study was conducted on the type of articles stated in the objective, using a total of 30 bibliographies. Documentary review and analysis-synthesis methods were used to prepare the final report. Resources available on the Infomed network were used to select the information, specifically: PubMed and SciELO, through the databases: Medline, Search Premier and Scopus. Development: the core elements in the immunopathology of COVID-19 involve innate immunity, with the sustained increase of pro-inflammatory interleukins associated with failures in the interferon system, which can trigger a potentially fatal cytokine storm. In terms of elements linked to adaptive immunity, there is evidence of marked lymphopenia which, depending on the degree, may indicate the severity of the disease. Conclusions: understanding the orchestrated immune response following SARS-CoV-2 infection and its temporal sequence allows us to choose timely and effective therapies, specifically when selecting anti-inflammatory drugs and the time of their application, as it is difficult to determine when they will be clearly beneficial, that they do not impair the response and that it is not too late, given the irreversibility of the process.

8.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: covidwho-2304813

ABSTRACT

SARS-CoV-2 severity predictions are feasible, though individual susceptibility is not. The latter prediction allows for planning vaccination strategies and the quarantine of vulnerable targets. Ironically, the innate immune response (InImS) is both an antiviral defense and the potential cause of adverse immune outcomes. The competition for iron has been recognized between both the immune system and invading pathogens and expressed in a ratio of ferritin divided by p87 (as defined by the Adnab-9 ELISA stool-binding optical density, minus the background), known as the FERAD ratio. Associations with the FERAD ratio may allow predictive modeling for the susceptibility and severity of disease. We evaluated other potential COVID-19 biomarkers prospectively. Patients with PCR+ COVID-19 tests (Group 1; n = 28) were compared to three other groups. In Group 2 (n = 36), and 13 patients displayed COVID-19-like symptoms but had negative PCR or negative antibody tests. Group 3 (n = 90) had no symptoms and were negative when routinely PCR-tested before medical procedures. Group 4 (n = 2129) comprised a pool of patients who had stool tests and symptoms, but their COVID-19 diagnoses were unknown; therefore, they were chosen to represent the general population. Twenty percent of the Group 4 patients (n = 432) had sufficient data to calculate their FERAD ratios, which were inversely correlated with the risk of COVID-19 in the future. In a case report of a neonate, we studied three biomarkers implicated in COVID-19, including p87, Src (cellular-p60-sarcoma antigen), and Abl (ABL-proto-oncogene 2). The InImS of the first two were positively correlated. An inverse correlation was found between ferritin and lysozyme in serum (p < 0.05), suggesting that iron could have impaired an important innate immune system anti-viral effector and could partially explain future COVID-19 susceptibility.


Subject(s)
COVID-19 , Humans , Infant, Newborn , Biomarkers, Tumor , COVID-19/epidemiology , Ferritins , Immune System , Iron , Pandemics , Prospective Studies , SARS-CoV-2
9.
Journal of Entomological Research ; 46(4):869-877, 2022.
Article in English | CAB Abstracts | ID: covidwho-2280495

ABSTRACT

The new corona virus illness (COVID-19) swept around the world, quickly creating a serious international disaster. For the treatment and prevention of COVID-19, apitherapy appears to be a viable source of pharmacological and nutraceutical medicines. Honey, pollen, propolis, royal jelly, beeswax, and bee venom, for example, have been demonstrated to have significant antiviral action against infections that cause severe respiratory syndromes, including those produced by human corona viruses. Furthermore, many of these natural products are involved in the induction of antibody production, maturation of immune cells, and stimulation of innate and adaptive immunological responses and many of them are involved in the induction of antibody production, maturation of immune cells, and stimulation of innate and adaptive immunological responses.

10.
Front Immunol ; 13: 1030627, 2022.
Article in English | MEDLINE | ID: covidwho-2274245

ABSTRACT

COVID-19 has been shown to have a multifaceted impact on the immune system. In a recently published article in Front Immunol, we show that the intravascular innate immune system (IIIS) is strongly activated in severe COVID-19 with ARDS and appears to be one of the causes leading to severe COVID-19. In this article, we describe the IIIS and its physiological function, but also the strong pro-inflammatory effects that are observed in COVID-19 and in various other pathological conditions and treatments such as during ischemia reperfusion injury and in treatments where biomaterials come in direct contact with blood in, e.g., extracorporeal and intravasal treatments. In the present article, we describe how the IIIS, a complex network of plasma proteins and blood cells, constitute the acute innate immune response of the blood and discuss the effects that the IIIS induces in pathological disorders and treatments in modern medicine.


Subject(s)
COVID-19 , Humans , Immunity, Innate , Immune System
11.
Bioimpacts ; 13(2): 159-179, 2023.
Article in English | MEDLINE | ID: covidwho-2280015

ABSTRACT

Introduction: In late December 2019, a sudden severe respiratory illness of unknown origin was reported in China. In early January 2020, the cause of COVID-19 infection was announced a new coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Examination of the SARS-CoV-2 genome sequence revealed a close resemblance to the previously reported SARS-CoV and coronavirus Middle East respiratory syndrome (MERS-CoV). However, initial testing of drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. One of the key strategies to fight the virus is to look at how the immune system works against the virus, which has led to a better understanding of the disease and the development of new therapies and vaccine designs. Methods: This review discussed the innate and acquired immune system responses and how immune cells function against the virus to shed light on the human body's defense strategies. Results: Although immune responses have been revealed critical to eradicating infections caused by coronaviruses, dysregulated immune responses can lead to immune pathologies thoroughly investigated. Also, the benefit of mesenchymal stem cells, NK cells, Treg cells, specific T cells, and platelet lysates have been submitted as promising solutions to prevent the effects of infection in patients with COVID-19. Conclusion: It has been concluded that none of the above has undoubtedly been approved for the treatment or prevention of COVID-19, but clinical trials are underway better to understand the efficacy and safety of these cellular therapies.

12.
Biology (Basel) ; 12(2)2023 Jan 22.
Article in English | MEDLINE | ID: covidwho-2199736

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen of coronavirus disease 19 (COVID-19). COVID-19 can manifest with a heterogenous spectrum of disease severity, from mild upper airways infection to severe interstitial pneumonia and devastating acute respiratory distress syndrome (ARDS). SARS-CoV-2 infection may induce an over activation of the immune system and the release of high concentrations of pro-inflammatory cytokines, leading to a "cytokine storm", a recognized pathogenetic mechanism in the genesis of SARS-CoV-2-induced lung disease. This overproduction of inflammatory cytokines has been recognized as a poor prognostic factor, since it can lead to disease progression, organ failure, ARDS and death. Moreover, the immune system shows dysregulated activity, particularly through activated macrophages and T-helper cells and in the co-occurrent exhaustion of lymphocytes. We carried out a non-systematic literature review aimed at providing an overview of the current knowledge on the pathologic mechanisms played by the immune system and the inflammation in the genesis of SARS-CoV-2-induced lung disease. An overview on potential treatments for this harmful condition and for contrasting the "cytokine storm" has also been presented. Finally, a look at the experimented experimental vaccines against SARS-CoV-2 has been included.

13.
Tissue Barriers ; 10(4): 2020706, 2022 10 02.
Article in English | MEDLINE | ID: covidwho-2157361

ABSTRACT

When the organism encounters a foreign substance, it responds with mutual and regular interactions at different stages of the immune system. In airway diseases, the first encounter is at the epithelial level, where innate immune cells and their responses form the first leg of the protective mechanism. The most important barrier for environmental damage is the epithelial barrier. However, the epithelial barrier is not just a mechanical barrier. The formation of the microbiome on the epithelium and the tolerance or intolerance to environmental factors are vital. This vital balance is maintained between the epithelial surface and the subepithelial innate immune system. This is achieved by the epithelial line, which is a mechanical and functional barrier between them. In this respect, epithelial barrier function preservation has an important role in the development and prognosis of airway disease.


Subject(s)
Immune System , Epithelium
14.
Chinese Journal of Virology ; 38(1):175-186, 2022.
Article in Chinese | GIM | ID: covidwho-2115892

ABSTRACT

COVID-19 pandemic, caused by infection Of severe acute respiratory syndrome Coronavirus 2 (SARS -CoV-2), is an ongoing and severe threat to public health and safety. The Coronavirus nucleoeapsid(N) protein mainly functions as a key structural protein, responsible for binding and packaging viral genome RNA into nucleocapsid and recruiting membrane(M) protein for virion assembly. In addition. the N protein functions as a regulatory protein and plays important roles in suppression of the host innate immune response, and localization with replication transcription complex (RTC) to facilitate Viral transcription and replication. Accumulating evidences have emerged recently that SARS-CoV-2 N protein undergoes liquid-liquid phase separation (LLPS) with RNA or other proteins. Importantly, phase separation of the N protein has been Shown to be essential for its structural and regulatory roles. Here, we summarize recent research progress on the phase separation of SARS-CoV-2 N protein. The potential of the phase separation of the N protein as a therapeutic drug targets is also discussed.

15.
Disease Surveillance ; 37(4):445-452, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1994243

ABSTRACT

Immunobiotics, a group of probiotics, have the effect of anti-infection by regulating immune function, which can be added in in foods or used to make adjuvants or medicines (biologics). Immunobiotics can stimulate the mucosal immune system of the body, regulate innate and acquired immunity and exert non-specific anti-microbial (bacterial and viral) infection effects through oral, nasal mucosa, sublingual and other routes, but the immune regulation function of immunobiotics is species-specific. Oral administration of Lactobacillus plantarum GUANKE stimulated the increase and maintenance of SARS-CoV-2 neutralization antibodies in mice even 6 months after immunization. When L. plantarum GUANKE was given immediately after SARS-CoV-2 vaccination, the level of SARS-COV-2 specific neutralizing antibody in bronchoalveolar lavage increased by 8 times in mice, which improved the local and systematic cellular immune response to SARS-CoV-2 of mice. Clinical studies have found that immunobiotics have the auxiliary effect in the treatment of COVID-19 by mitigating the symptoms and increase the level of SARS-CoV-2 specific antibody of the patients. It is necessary to conduct research and evaluation for the appropriate guideline of immunobiotics use as erly as possible to provide a new option for the prevention and control of COVID-19.

16.
Front Cell Infect Microbiol ; 12: 937460, 2022.
Article in English | MEDLINE | ID: covidwho-1952266

ABSTRACT

Humanity has experienced four major pandemics since the twentieth century, with the 1918 Spanish flu, the 2002 severe acute respiratory syndrome (SARS), the 2009 swine flu, and the 2019 coronavirus disease (COVID)-19 pandemics having the most important impact in human health. The 1918 Spanish flu caused unprecedented catastrophes in the recorded human history, with an estimated death toll between 50 - 100 million. While the 2002 SARS and 2009 swine flu pandemics caused approximately 780 and 280,000 deaths, respectively, the current COVID-19 pandemic has resulted in > 6 million deaths globally at the time of writing. COVID-19, instigated by the SARS - coronavirus-2 (SARS-CoV-2), causes unprecedented challenges in all facets of our lives, and never before brought scientists of all fields together to focus on this singular topic. While for the past 50 years research have been heavily focused on viruses themselves, we now understand that the host immune responses are just as important in determining the pathogenesis and outcomes of infection. Research in innate immune mechanisms is crucial in understanding all aspects of host antiviral programmes and the mechanisms underpinning virus-host interactions, which can be translated to the development of effective therapeutic avenues. This review summarizes what is known and what remains to be explored in the innate immune responses to influenza viruses and SARS-CoVs, and virus-host interactions in driving disease pathogenesis. This hopefully will encourage discussions and research on the unanswered questions, new paradigms, and antiviral strategies against these emerging infectious pathogens before the next pandemic occurs.


Subject(s)
COVID-19 , Influenza Pandemic, 1918-1919 , Influenza, Human , Viruses , Antiviral Agents/therapeutic use , History, 20th Century , Humans , Influenza, Human/drug therapy , Interferons , Pandemics , SARS-CoV-2
17.
Expert Rev Cardiovasc Ther ; 20(4): 241-251, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1784217

ABSTRACT

INTRODUCTION: Vaccines have demonstrated protection against the morbidity and mortality of COVID-19, but concerns regarding the rare side effect of acute myocarditis have stymied immunization efforts. This review aims to describe the incidence and theorized mechanisms of COVID vaccine-associated myocarditis and review relevant principles for management of vaccine-associated myocarditis. AREAS COVERED: Epidemiologic studies of myocarditis after COVID vaccination are reviewed, which show an incidence of approximately 20-30 per million patients. The vast majority of these cases are seen with mRNA vaccines especially in male patients under 30 years of age. Mechanisms are largely theoretical, but molecular mimicry and dysregulated innate immune reactions have been proposed. While studies suggest that this subtype of myocarditis is mild and self-limited, long-term evidence is lacking. Principles of myocarditis treatment and surveillance are outlined as they apply to COVID vaccine-associated myocarditis. EXPERT OPINION: COVID vaccine-associated myocarditis is rare but well described in certain at-risk groups. Better understanding of its pathogenesis is key to mitigating this complication and advancing vaccination efforts. Risk-benefit analyses demonstrate that individual- and population-level benefits of vaccination exceed the risks of this rare and mild form of myocarditis.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Vaccination , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Incidence , Male , Myocarditis/chemically induced , SARS-CoV-2 , Vaccination/adverse effects
18.
Cells ; 11(5)2022 02 23.
Article in English | MEDLINE | ID: covidwho-1742337

ABSTRACT

A significant number of postural orthostatic tachycardia syndrome (POTS) patients have platelet delta granule storage pool deficiency (δ-SPD). The etiology of POTS is unknown but a number of laboratories, including ours, have reported elevations of G-protein-coupled adrenergic receptor and muscarinic acetylcholine receptor autoantibodies in POTS patients, detected by a variety of techniques, suggesting that the disorder is an autoimmune condition. Thus, it could also be considered an inflammatory disease. In a pilot study, we investigated a limited number of platelet-related cytokines and chemokines and discovered many that were elevated. This case-control study validates our pilot study results that POTS patients have an activated innate immune system. Plasma of 35 POTS patients and 35 patients with unexplained bleeding symptoms and categorized as "non-POTS" subjects was analyzed by multiplex flow cytometry to quantify 16 different innate immune system cytokines and chemokines. Electron microscopy was used to quantify platelet dense granules. Ten of 16 biomarkers of inflammation were elevated in plasma from POTS patients compared to non-POTS subjects, with most of the differences extremely significant, with p values < 0.0001. Of particular interest were elevations of IL-1ß and IL-18 and decreased or normal levels of type 1 interferons in POTS patients, suggesting that the etiology of POTS might be autoinflammatory. All POTS patients had δ-SPD. With a growing body of evidence that POTS is an autoimmune disease and having elevations of the innate immune system, our results suggest a potential T-cell-mediated autoimmunity in POTS characteristic of a mixed-pattern inflammatory disease similar to rheumatoid arthritis.


Subject(s)
Platelet Storage Pool Deficiency , Postural Orthostatic Tachycardia Syndrome , Biomarkers , Case-Control Studies , Cytokines , Humans , Pilot Projects , Postural Orthostatic Tachycardia Syndrome/diagnosis , Receptors, G-Protein-Coupled
19.
Int J Mol Sci ; 23(5)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1736942

ABSTRACT

With the growing problem of the emergence of antibiotic-resistant bacteria, the search for alternative ways to combat bacterial infections is extremely urgent. While analyzing the effect of antimicrobial peptides (AMPs) on immunocompetent cells, their effect on all parts of the immune system, and on humoral and cellular immunity, is revealed. AMPs have direct effects on neutrophils, monocytes, dendritic cells, T-lymphocytes, and mast cells, participating in innate immunity. They act on B-lymphocytes indirectly, enhancing the induction of antigen-specific immunity, which ultimately leads to the activation of adaptive immunity. The adjuvant activity of AMPs in relation to bacterial and viral antigens was the reason for their inclusion in vaccines and made it possible to formulate the concept of a "defensin vaccine" as an innovative basis for constructing vaccines. The immunomodulatory function of AMPs involves their influence on cells in the nearest microenvironment, recruitment and activation of other cells, supporting the response to pathogenic microorganisms and completing the inflammatory process, thus exhibiting a systemic effect. For the successful use of AMPs in medical practice, it is necessary to study their immunomodulatory activity in detail, taking into account their pleiotropy. The degree of maturity of the immune system and microenvironment can contribute to the prevention of complications and increase the effectiveness of therapy, since AMPs can suppress inflammation in some circumstances, but aggravate the response and damage of organism in others. It should also be taken into account that the real functions of one or another AMP depend on the types of total regulatory effects on the target cell, and not only on properties of an individual peptide. A wide spectrum of biological activity, including direct effects on pathogens, inactivation of bacterial toxins and influence on immunocompetent cells, has attracted the attention of researchers, however, the cytostatic activity of AMPs against normal cells, as well as their allergenic properties and low stability to host proteases, are serious limitations for the medical use of AMPs. In this connection, the tasks of searching for compounds that selectively affect the target and development of an appropriate method of application become critically important. The scope of this review is to summarize the current concepts and newest advances in research of the immunomodulatory activity of natural and synthetic AMPs, and to examine the prospects and limitations of their medical use.


Subject(s)
Antimicrobial Cationic Peptides , Antimicrobial Peptides , Allergens/pharmacology , Antimicrobial Cationic Peptides/chemistry , Bacteria , Immunity, Innate , Immunomodulation
20.
Immunol Lett ; 243: 19-27, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1734546

ABSTRACT

The interest in the process of aging, and specifically in how aging affects the working of our immune system, has recently enormously grown among both specialists (immunologists and gerontologists) and representatives of other disciplines of health sciences. An obvious reason for this interest is the current pandemics of COVID-19, known to affect the elderly more than younger people. In this paper current knowledge about mechanisms and complex facets of human immune system aging is presented, stemming from the knowledge about the working of various parts of the immune system, and leading to understanding of immunological mechanisms of chronic, inflammatory, aging-related diseases and of COVID-19.


Subject(s)
Aging/physiology , Immune System/immunology , Inflammation/immunology , SARS-CoV-2/physiology , Aged , Animals , COVID-19 , Humans , Immunosenescence
SELECTION OF CITATIONS
SEARCH DETAIL